
Interaction of a warm plasma column with high-frequency electric fields: purely growing

parametric instability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 2223

(http://iopscience.iop.org/0301-0015/7/17/016)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/17
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 7, No. 17, 1974. Printed in Great Britain. 0 1974 

Interaction of a warm plasma column with high-frequency 
electric fields : purely growing parametic instability 
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Faculty of Physics, Sofia University, Sofia 26, Bulgaria 

Received 22 March 1974, in final form 11 June 1974 

Abstract. A formalism for the derivation of the dispersion relation for potential surface 
waves which can propagate on a bounded warm plasma (plasma column) immersed in a 
high-frequency electric field E = E, sin coot is described. The dispersion relation is examined 
for the case of strong and weak external electric fields. The threshold field and the growth 
rate of the purely growing surface parametric instability in a warm plasma column are 
obtained. It is shown that the threshold of purely growing surface instability for a plasma 
column is not higher than the threshold of decay (periodic) parametric instability for the 
same column. 

1. Introduction 

In the past few years great interest has been aroused in the absorption of intense 
electromagnetic waves by plasmas through the mechanism of parametric instabilities 
(Silin 1968, DuBois 1973). Since it is not difficult to achieve the conditions for the 
excitation of such instabilities an understanding of this process may be of great im- 
portance for many plasma experiments. Recently, a number of experimental observa- 
tions (Franklin et al 1971, Chu et al 1973) have shown that in real plasma configurations 
the parametric instabilities arise at frequencies lower than the theoretically predicted 
ones for infinite plasmas (Nishikawa 1968, Andreev et a1 1969). On the other hand, 
the first theoretical work devoted to parametric processes in bounded plasma con- 
figurations (Goldman 1969, Aliev and Ferlengi 1969, Aliev et al 1972a) shows that the 
frequency of the pump wave can be near the frequency of the surface waves (for instance 
such as Trivelpiece-Gould (1959) modes) which can propagate on the system. It is also 
completely possible for some of the parametrically excited waves to be surface waves 
as well (Moisan 1971, Chu et a1 1973). It is worth noting that the threshold for excitation 
of a purely growing (PG) instability in a plasma layer may prove to be lower than the 
threshold for the PG instability in infinite plasmas and may be compared with the 
threshold for decay instability (Aliew er a1 1972b). In view of the potential possibility 
for experimental detection (Tamor 1973, Valeo and Oberman 1973) and circumstantial 
investigation of the PG instability by direct comparison of the experimental data with 
the results of the theory, it is the purpose of the present paper to derive the threshold 
conditions and the growth rate of PG instability in a real plasma geometry, namely, 
a plasma cylinder. 

2223 
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2. Derivation of the basic equations 

We shall study the interaction between an external driving electromagnetic field (with 
a frequency mo and a wavenumber k, )  and a cylinder (with a radius R) of homogeneous 
isotropic warm plasma bounded by a vacuum. We assume that the electromagnetic 
wave propagates normally to the cylinder axis as the electric vector E = E,  sin (coot - 
k ,  . r )  is directed along the plasma column axis. If the wavevector k of the parametrically 
excited waves satisfies the inequality Ikl >> Ik,J (we shall assume that this inequality is 
satisfied), for the pump wave one may use the dipole approximation, E = E, sin coot. 
Moreover, we consider that the parametrically excited modes propagate along the 
direction of the driving field, ie they are axially-symmetric waves (it is well known that 
in infinite isotropic plasmas the dominant coupling and the lowest threshold occur 
when kl(E, (Markeev 1971, Perkins and Flick 1971). 

The dynamics of plasma particles and the field in the plasma are described by the 
linearized Vlasov and Poisson equations. In the case of bounded plasmas the Vlasov 
equation can be witten in the form 

a e 
ffl,(r, U, t ) + u .  V f , , ( r ,  U, t)+ “ E ,  sin mor+-  

(% 

where e, and m, (me = m, mi = M )  are the charges and the masses of the particles of 
the species a (a = e, i); fou(v)  and fl,(r, U, t )  are their equilibrium and perturbed distri- 
bution functions; q(r ,  t )  is the potential of the perturbed electric field in the plasma; 
vI and U, are the plasma particles’ velocity components, perpendicular and parallel 
to the cylinder axis; = -(e,E,/m,m,) cos mot is the oscillating velocity of particles 
in a field of pump wave E, = (0, 0, E, )  and F = ( F ,  0,O) is the force which reflects the 
particles when they strike the plasma-vacuum boundary. The specular reflection of 
the particles imposes the following condition for the functionsf,, : 

f l k  = R,  z ,  - u r ,  uti 7 t )  = f1Ar = R, z,  ur ,  UIi 9 t )  ( 2 )  

(where Iulll = (u ,2+~i)~’~,which means that F ( - u , )  = -F(u, ) .  
It is relevant that the plasma equations should be written in frames of reference 

tied to the oscillating plasma particles. In such frames the Vlasov equation has the 
same form as in a plasma without any external driving field (Dawson and Oberman 
1962) 

a a F a  e a  a 
at dr m, av ma ar av -fl,(r’, U‘, t)+ U‘. +,,(r’, U’, r ) + - .  Yfl , (r ’ ,  U‘, t ) - L + ( r ’ ,  t )  . +,,(U’ 2, = 0 (3) 

where r’ is the position vector of the particles in the oscillating frame and 

W’, t )  = 4j.[r - rE.(Or t l  (4) 

with rE, = -(e,E,/m,wg) sin mot, is the potential in the same frame. The condition for 
specular reflection of particles ( 2 )  remains invariant with respect to this frame trans- 
formation and F‘ = F. 
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If the dependence of all the quantities on coordinate z' and time t is of the form 
exp[i(k:z' -at)], kinetic equation (3) written for a cylindrical plasma (after integrating 
over oe) becomes 

a ~a 
- f ( r  u)-iufiu(r,~,)+--flu(r,~,)-ee,f~ 
ar " ' mivr aUr  

where f b  
respect to energy, and K 

8fo,/88, is the derivative of the equilibrium distribution function with 
(w-  k:u:)/u,. Boundary condition (2) then simplifies to 

f 1  AR, - U,) = . f l i(R, U,). (6) 
I t  is more convenient to use as solutions of ( 5 )  the functions $:(r,u,) instead of 

functions fll(r, U,) where 

$:(r,  U,) = f i a ( r ,  U r ) * f i a ( r ,  ut-), 

In such a case the boundary condition (6) is homogeneous: t+h,-(R) = 0. Writing the 
kinetic equation for negative values of U, and performing addition and subtraction with 
( 5 )  we obtain two equations for $2 

The radial and axial components of the induced current density j ,  are defined through 
the functions $: by the expressions 

We shall seek the solution of (7) by making series expansions for functions t+h: and 
I$ in Dini's series 

and for $a- in Fourier-Bessel series (Petiau 1955) 

where 5 ,  2 0 are roots of the equation J , ( R ( )  = 0;  J ,  are the Bessel functions of the 
first kind and nth order ; the prime means differentiation with respect to the argument 
of the function. 

After multiplying equations (7) by rJ l (r ( , )  and rJ0(r(,), respectively, and integrating 
over r from 0 to R, one obtains a set of equations for the coefficients A:(( , )  which may 
be expressed in terms of r$(tv). If for the current densitiesj,,(,,, we make series expansions 
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similar to those for $:, we find the following relations between the coefficients 
J n r ( z , J t p )  and &tJ : 

provided that the contribution of the integral J: dr $-(r)J0(rtp) appearing in the cal- 
culations, is ignored. (A justification for this is given in the appendix.) 

The continuity equation for charge 

a p a  - -+divj, = 0 
at 

written in the space of the variables t,, gives us a certain relation between the charge 
density perturbation pa(( , )  and the potential c$(<,,). Taking this relation into account, 
on the basis of the equality 

one can define the partial longitudinal dielectric permittivities (electric susceptibilities) 
of the particles of the species a 

The potential of the self-consistent electric field which arises in the laboratory frame 
as a result of the interaction of the driving field with the plasma is determined from the 
Poisson equation 

= - 4 n Z e , / d a  f i a  
a 

whose solution will be sought in the form 
m 

q(r ,  t )  = q(")(r) exp[ - i(o + nwo)t + ik,z] 
n = - m  

where 

a t r < R  

I ,  and I(, are the modified Bessel functions of the first and second kind and nth order. 
Following Cheng and Harris (1969) we choose the general solution of (13) within the 
plasma as a sum of a solution of Laplace's equation and a solution ofthe Poisson equation 
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assuming that the parametrically excited waves are surface modes. From (15) one may 
derive a recurrence formula between F("'((,) and 4(")((J 

(16) 
k R  @")(tv) = J o ( R < v ) Z l ( k , R ) ~ ~ ~ " ~  + F'"'(<,). 

L + k f  
After performing a Fourier transform in time t and space coordinate z ,  equation (13) 
according to (14) and (15) takes the form 

(17) 

eaJdv fla 
can be expressed through the Fourier components of the charge density in the oscillating 
frame. Bearing in mind that the oscillating and laboratory frames are equivalent with 
respect to wave propagation in a plasma (due to the directed motion of the particles of 
some a species) with and without a driving field, respectively, it is possible to write 

(ti + kt)F'"'((, , k , ,  o + nuo)  = 4n pF'(5, , k , ,  o + MO,). 
a 

The beat Fourier components p?'((,, k,, w) of the charge density pa@,  t )  

p&' + rE,(t), 4 = Pa(r', 0. 
A Fourier transform on t and z and Fourier-Bessel transform on r (taking into account 
that Y E ,  has only one component along the z axis and k: = k,) reduce the above equality to 

where a, = k,eaE,/maw~ (Lee et al 1972). An analogous relation exists also for the 
potentials +((,) and &((,). Since Pa((,) are expressed in terms of Sga and &(,) (equation 
(1 l)), the right-hand side of the Poisson equation becomes 

47cp1(<,, k, 9 0) = 4n X E .  * ~ a ( t ,  7 k z  9 00 = - (ti + k t )  
a a 

L E m  * [ S g a ( t p  3 kz 9 wO&tp)I. 

When the operator A E a  is applied to 4(<,), equation (17) reads as follows 

F(t,j k , ,  0) = c z E E  * [Sga(t,, k, 9 w ' ) A E ,  - 4(t, 9 k, 9 0'71. (19) 

According to the kind of operators A E m  and BE= equation (19) after substituting w +  nw, 
for w transforms to 

F'"'(t,, k,, + no,) 

U 

m 

= - 1 1 d~'~'(t,, k ,  , w  + PW,) M?(t,, k, , + sw,)J, - ,,(aa)Js - p(ao). (20) 

When the boundary effects vanish (infinite plasmas) and qP') tends to F'"), from (20) 
one can derive the dispersion relation of the waves in a plasma immersed in an external 
high-frequency electric field (Aliev and Silin 1965, Sanmartin 1970, Kaw and Dawson 
1971). 

The conditions for continuity of the potential cp and its normal derivative a c p p  
at the plasma-vacuum boundary are 

a p , s =  -to 
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According to (15) conditions (21) reduce to the set of equations 

The determination of the beat coefficients F'")(5,) by means of recurrence formula (16) 
and equation (20) yields an infinite set of equations for F'"'(n = 1,2,. . . ) 

From the solvability condition of (22) and (23) one obtains the dispersion relation of 
the waves in a warm plasma column bounded by a vacuum and driven by an external 
high-frequency electric field. 

3. Purely growing surface parametric instability under the interaction of a strong 
high-frequency electric field with a plasma column 

If the driving field is strong, vE,  >> vT, ( u E ,  = eE,/mw, is the amplitude of the oscillating 
electrons' velocity and uT, = (T,/m)"' is their thermal velocity), and the frequency coo 
is higher than the ion plasma frequency, coo >> wpi = (4ne2n0/M)"', the ions' oscillating 
velocity can be considered equal to  zero and the dissipative losses due to the particles' 
thermal motion (Landau damping) may be ignored. In such a case w >> kuTe and the 
partial dielectric permittivities of the electrons and ions are, respectively, 

and 661") = - 4 ' 2: 0 (for s # 0). ijd',"'= - 4 
(0 + sway (0 + s u o )  

Here wpe = (4ne2nO/m)112 is the electron plasma frequency. After summing over v 
in (23) and substituting the left-hand side of (22) for 

in (23), we obtain the following set of equations: 

= 0. 

The solution of the infinite determinant corresponding to this set yields the spectra 
derived by Aliev and Ferlengi (1969). The various cases for PG instability under the 
interaction of a plasma column or layer with a strong high-frequency electric field are 
analysed in detail in their paper. We note that the results of Aliev and Ferlengi are 
valid whenever the growth rates of the discovered instabilities are greater than kzuT, .  It is 
obvious that the threshold fields (for a PG surface instability or for a periodic low- 
frequency instability, both accompanied with high-frequency modes) and the growth 
rate near the threshold can be derived in the approximation of a weak field. 
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4. Purely growing surface parametric instability under the interaction of a weak 
high-frequency electric field with a warm plasma column 

If the driving field is weak, uEe << uT,, its frequency wo is near the frequency w, of the 
high-frequency surface waves and the wavelength of the instabilities 2 4 k ,  is much 
greater than the Debye radius of the electrons, ie if (wpe /wO)krrDe  < 1 where rDa = 
(T , /417e~n~)" ' ,  the frequency w of the low-frequency component of the resulting PG 
instability is much lower than wo and k,uTa. In this case only the Bessel functions 
J,(a,) with indices n = 0, f 1 and the partial dielectric permittivities 6&Jo*.' give 
considerable contributions to the terms of equation (23 ) .  Since ai 'Y 0, in the leading 
terms we shall retain 661') and Jo(ai) = 1 only. Such a truncation of the set of equations 
is possible only if the waves corresponding to the beat Fourier components F'O. ' 
are resonantly excited and their dispersion relation is nearly satisfied. On the other 
hand these waves can be simultaneously resonantly excited by the parametric interaction 
if the frequency and wavevector matching conditions (the laws of conservation of quasi- 
energy and quasi-momentum) 

wk = a k '  + wk - k '  

k = k ' + ( k - k ' )  

are satisfied. In the dipole approximation for the pump field, the wave with a frequency 
(coo - w )  which corresponds to F ( -  ' ) ( k , )  has a wavenumber - k, ,  while the waves with 
frequencies w and wo + w,  corresponding to F'O)(k,) and F(l)(k,) ,  have a wavenumber k , .  

from (23 )  and their substitution in ( 2 2 )  
results in a homogeneous set of equations for the coefficients A',o"'). The condition 
for solvability of this set yields the dispersion relation of parametric instabilities in a 
warm plasma column bounded by a vacuum 

The calculation of the coefficients F(03 

where 

Taking the definition of Dn's into account the sum in the bracket in ( 2 4 )  reads 

1 1 
D , € ( ' ) + D  - 1  ~ 9 - l )  

where A = wo -0, is the mismatch of the driving field, 7 is the damping rate of the high- 
frequency surface waves with a frequency 0,. 

In the range of low frequencies when w << k,t.Te, the partial dielectric permittivities 
b6a(w, k) in a collisionless plasma with Maxwellian equilibrium distribution functions 
according to ( 1 2 )  take the form 
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where k 3 ( ( : + k f ) ’ i 2 .  As expression ( 2 6 )  coincides with the well known formula for 
Me of infinite fully ionized plasmas (Ginzburg and Rukhadze 1970), we assume that 
the contribution of the collisional dissipation to for a bounded (cylindrical) plasma is 
the same as for an infinite one : 

6gU,(o, k)  = 22 rDu { 1 + i- k r T [ ( i ) 1 ’ 2 + $ ] } ‘  

When TJT > (m/M)1’2 the ion collisional dissipation can be neglected and the dissipa- 
tion due to  the electrons can be specified by the magnitude of v e f f .  In a fully ionized 
plasma veff = 1.44 vei (Bogdankevich er al 1967) where 

and L is the Coulomb logarithm (Ginzburg and Rukhadze 1970). 
Having derived the formula for Ma an expression for Do may then be found 

where the quantity x has the values : 

for collisionless plasmas, and 

1 Veff 2kz “ 1 +-- c 
v;erge R v = l  ( 5 : + k t ) ( ( : + k : + r ; 2 ) 2  

for plasmas with collisions. In  these expressions 
- l / 2  

‘D = ($+$) 
is the plasma Debye radius. 

It is well known that when there are no external pump fields, nearly self-consistent 
potential waves with frequencies o < kzuT, cannot propagate in a plasma. However, 
in the presence of a pump field according to ( 2 4 )  Im Do can alter its sign for a fixed value 
of k, which is equivalent to the appearance of PG instability (with a frequency Re o = 0 
and a growth rate y = Im o > 0) provided that the pump amplitude is greater than a 
threshold value Et‘  : 

The minimum threshold occurs when IAl = 7 and if k , R  + 30 (semi-bounded plasma) 
the value of qmin coincides with the threshold derived by Aliev er a1 (1972a). 
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As w, and 7 are functions of k, the condition [AI = j j  specifies the threshold wave- 

The growth rate of the PG instability may be derived from (24) by substituting 
length, 2n/kihr, of the PG instability with its onset. 

-iw = j ,  and we obtain 

From an experimental point of view it is desirable to start an analysis of formulae 
(30) and (31) for reasonable sizes of the plasma column. Let us calculate the threshold 
field for a thin cylinder, k, R < 1.  (The threshold for a thick cylinder, k,R > 1, is practi- 
cally the same as for a semi-bounded plasma.) According to  equation (24) with 661'' = 0 
and a, = 0 the spectrum of the surface waves in the frequency range wpe > w, > wpi, 
krvT,, veff is given by 

a, = wp,k,R[ln(k,R)- 1/2]1 /2  (32) 

and their damping rate is 

The appearance of the small term $veff (where for fully ionized plasmas veff = \ l e i )  is 
equivalent to taking into account the collisions in the kinetic equation through a term 
(6f1J6t),,,, + - vefrf la .  Furthermore the collisional damping rate in (33) is derived 
on the assumption that the plasma boundedness cannot influence the collisional mech- 
anism among the particles. 

On the basis of the values derived for a, and 7 ,  from formula (30) one finds the 
final expression for the threshold field of the PG surface instability in a thin plasma 
column 

112 k2 RrDe 42 qmin = 2 4 2  1 + -  k,R In- - ( z )  ( kfR) ( In k,R[ln(k,R)- (34) 

Obviously, for some values of veff the collisional damping determines the threshold for 
the instability onset. Moreover in a collisional plasma qmin depends linearly on the 
plasma radius while in collisionless plasmas this dependence is quadratic. 

The growth rate of the PG surface instability in the super-threshold regime can be 
calculated in the case of collisional plasmas only. For the reasonable values of the 
mismatch (ie 1A1 = 7 )  the second term in the bracket of (31), which includes the kinetic 
effects as well, according to (29b) and (33) becomes 

If in the plasma the hydrodynamical effects are essential (veff > k,vT,), bearing in 
mind that lnope/w, < l/k,R, one may conclude that the inequality ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ 7  << 1 is 
always satisfied provided that (veff/wpi)2 < ( 1  + TJ7J2. The latter inequality is obtained 
when k,R takes its minimum value derived from the condition W ,  2 oPi. Hence the 
maximum growth rate of the PG instability with the superthreshold values of the field is 

t The value of f adduced in Zhelyazkov and Nenovski (1973) is wrong because of incorrect reading of formula 
(13) in the paper by Kondratenko (1972). (The check-up shows that the true value off must be taken from (33).) 
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reached for wavenumbers k, = kFr and has a magnitude 

‘l - ‘lmin - 
Ymax = ~ Y. 

‘lmin 
(35) 

In the case of collisionless plasmas when the kinetic effects dominate (veff < k,cTC) 
we cannot calculate the exact value of x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .  But estimating this quantity and 
taking its minimum value we obtain the inequality 

Since the value of this product can be greater than unity, the instability growth rate 
would be lower than the growth rate for a collisional plasma. Furthermore, the wave- 
number for which the growth rate is maximum would be different from k:h‘. However, 
since for real plasmas we always have veff # 0, the instability with the maximum growth 
rate (whose wavenumber satisfies the inequality k y v T e  < veff) will occur, ie even in the 
threshold regime the dominant effects are hydrodynamical. 

5. Concluding remarks 

Dispersion relation (24) may also be examined for the case of decay parametric instability 
when the pump frequency wo is greater than w, and the parametrically excited high- and 
low-frequency waves are surface modes. If the low-frequency component of the decay 
instability had a real frequency of the order of the ion-acoustic one, a,, = k,(T,/M)”2, 
the threshold &, of such an instability would be 

As the damping rate of the surface ion-acoustic wave yac is greater than (or equal to) 
the damping rate of the bulk ion-acoustic waves, according to the value of ‘i, taken from 
(33), one obtains ’i,y,,/w;f, 2 1. Therefore, the threshold qEin for the onset of surface 
decay parametric instability is not lower than the threshold qLyn for PG surface parametric 
instability, while in the case of infinite systems for non-isothermal plasmas, T,  > 7;, we 
have bulk waves and always $,yn > t&, (Andreev et a1 1969) and for isothermal plasmas, 
T,  N T ,  the two thresholds are equal (DuBois and Goldman 1967). 

When the plasma is infinite (or semi-bounded) the existence of oscillations (waves in 
the long wavelength limit k + 0) with certain characteristic frequency wch,,(k = 0) is 
possible. This allows us to fix the sign of the mismatch A = wo - wchar and by suitable 
adjustment of A we may control the nature of instability. For a plasma column the limit 
k, -+ 0, however, is not reasonable and since we cannot in advance know the instability 
wavenumber, we are not able to  find the value of w,(k,). In other words, we cannot control 
the sign of the mismatch A = wo - w,. In a bounded plasma system the instability with 
maximum growth rate will be excited and the nature of this instability may be identified 
only experimentally. 
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Appendix 

For convenience we rewrite the function $ - ( r )  (see (9c)) in the following way 
CO 

$-(4 = 1 A;Jl(rtv). 
v =  1 

As $-(O) = $- (R)  = 0 expression (A.l) possesses at least one extremum. We assume 
that it is unique : 

$e;,, = $-(rextr) + 0 0 < reXlr < R. ( A 4  
(The case with several extrema remains in principle the same.) The analysis of kinetic 
equation (7) shows that in 5's space one obtains an infinite set of algebraic equations for 
the coefficients A?(p = 1,2, .  . . ). Since each equation contains all the coefficients, this 
set is practically unsolvable. 

dr $ - ( r ) J o ( r t p )  to 
Re &'(U, k) and Im &'(CO, k), ie to  the spectrum and the damping rate of the waves which 
can propagate (&'(U, k) = 0). According to the assumption for one extremum, (A.2), 
using Bonne's theorem for average values, we derive that 

Let us now estimate qualitatively the contribution of the term 

1 2  

r1 
JoR dr $ - ( r ~ O ( r t p )  = $-(rextr) J dr ~o( r tp )  = $-(rextr)Ap (A.3) 

where0 < r l  < rextr < r2  < R. Then 

where 6, = 2e, f b and a2 = 2e, f bik:v:lv,. Multiplying the two sides of ( A 4  by J l ( r tp)  
and summing over p from 1 to a3 we find that its left-hand side is exactly $-(r). Further 
we determine $-(rexlr) (using (A.3)): 

One may show that by substituting $-(rexlr) in (A.4) the coefficients A; can be presented 
in the form 

CO 

A; = %A+ c %lJ48 ( A 4  
p =  1 
B+r 
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where 

Expressions (8) for the current density components in 5’s space define the conductivity 
tensor components of,@, 5,, k,) and a$(o, 5,, ra, kz).  Obviously the real part of oij (the 
energy dissipation) should be specified by the poles of a,, (or a,&. The analysis of 
expressions (A.6), taking into account (A.2) and (AS), shows that the dissipation (Re aij) 
is determined by the poles K’ = r,’, ie by the first part of the coefficients a,, : 

Therefore, the second part of a,,(a;, = a,, - ab,) and the coefficients aPp, which contain 
the integral dr Jl(r( , )Jo(r( , ) ,  have no contributions to Re oij. Hence, the collisionless 
dissipation due to the thermal motion of the plasma particles and to the boundary 
conditions does not depend on the occurrence of integral (A.3). 

In order to estimate the contributions of a;, and aPp to the wave spectrum 

Re &‘(U, k,) = 0 

let us return to (A.4) and differentiate it with respect to 5 , .  This yields the following 
differential equation for A - ( ( )  

where the unity in the bracket in front of A - ( ( )  represents the contribution of integral 
(A.3). Let the solution of (A.7) be A - ( { )  = f[4(5)]. One may show that the behaviour 
of the solution depends on the value of the parameter K .  The dependence on the term 
A - ( < )  (the unity inthe bracket), corresponding to (A.3), is inessential in the cases when : 
(a) K >> 5 and (b)  K < 5 provided that iKSl + 6’ N 0. The first case is not interesting as it 
is dominant in the calculations of the hydrodynamical effects only. In the second case 
the conditions K < 5 and i d l  + 6, = 0 can be fulfilled if the inequalities 

or 

0 2 0  64.9) 

are satisfied. Inequality (A.8) means a weak spatial dispersion of the waves propagating 
in bounded plasmas, and (A.9) expresses the shielding effect of the plasma particles. 
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Hence, the omission of integral (A.3) upon obtaining expressions (10) is reasonable only 
when we investigate the wave spectra in the frequency ranges w >> krvTe;  k z C T ,  << w << 
kzuTc or w << ksvT,.  A comparison of the spectra both for high-frequency (Diament 
et a1 1966) and for ion-acoustic (Klevans and Mitchell 1970) surface waves with the 
spectra derived from the equation Do = 0 shows that the contribution of integral (A.3) 
to the wave spectra is really inessential. 
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